Mean-field backward–forward stochastic differential equations and nonzero sum stochastic differential games

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Approximations for Nonzero-Sum Stochastic Differential Games

The Markov chain approximation method is a widely used, and efficient family of methods for the numerical solution a large part of stochastic control problems in continuous time for reflected-jump-diffusion-type models. It converges under broad conditions, and there are good algorithms for solving the numerical approximations if the dimension is not too high. It has been extended to zero-sum st...

متن کامل

Nonzero - Sum Stochastic Games

This paper extends the basic work that has been done on tero-sum stochastic games to those that are nonzerosum. Appropriately defined equilibrium points are shown to exist for both the case where the players seek to maximize the total value of their discounted period rewards and the case where they wish to maximize their average reward per period. For the latter case, conditions required on the...

متن کامل

Risk-Sensitive Mean-Field Stochastic Differential Games

In this paper, we study a class of risk-sensitive mean-field stochastic differential games. Under regularity assumptions, we use results from standard risk-sensitive differential game theory to show that the mean-field value of the exponentiated cost functional coincides with the value function of a Hamilton-Jacobi-Bellman-Fleming (HJBF) equation with an additional quadratic term. We provide an...

متن کامل

Mean Field Forward-Backward Stochastic Differential Equations

The purpose of this note is to provide an existence result for the solution of fully coupled Forward Backward Stochastic Differential Equations (FBSDEs) of the mean field type. These equations occur in the study of mean field games and the optimal control of dynamics of the McKean Vlasov type.

متن کامل

Stochastic differential equations and integrating factor

The aim of this paper is the analytical solutions the family of rst-order nonlinear stochastic differentialequations. We dene an integrating factor for the large class of special nonlinear stochasticdierential equations. With multiply both sides with the integrating factor, we introduce a deterministicdierential equation. The results showed the accuracy of the present work.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Stochastics and Dynamics

سال: 2020

ISSN: 0219-4937,1793-6799

DOI: 10.1142/s0219493721500362